Klasifikasi Ekspresi Wajah Menggunakan Region Selected Facial Landmarks Extraction dan Convolutional Neural Network (CNN)

Klasifikasi Ekspresi Wajah Menggunakan Region Selected Facial Landmarks Extraction dan Convolutional Neural Network (CNN)

Penulis

  • Cesilia Natasya Nainggolan Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya
  • Fitra A. Bachtiar Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya
  • Budi Darma Setiawan Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya

Kata Kunci:

klasifikasi ekspresi wajah, pemilihan fitur, landmark wajah

Abstrak

Jurnal ini akan dipublikasikan pada Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK)

Referensi

Bagherian, E. and Rahmat, R.W.O.K., 2008. Facial Feature Extraction for Face Recognition: A Review. In: 2008 International Symposium on Information Technology. https://doi.org/10.1088/1742-6596/1664/1/012050.

Chandrashekar, G. and Sahin, F., 2014. A survey on feature selection methods. Computers and Electrical Engineering, [online] 40(1), pp.16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024.

Ekman, P., 1970. Universal Facial Expressions of Emotion. California Mental Health, .

Ekman, P. and Friesen, W.V., 1986. A new pan-cultural facial expression of emotion. Motivation and Emotion, 10, pp.159–168.

Ekman, P., Friesen, W.V. and Ancoli, S., 1980. Facial Signs of Emotional Experience. Journal of Personality and Social Psychologists, 39, pp.1123–1134.

Ekundayo, O.S. and Viriri, S., 2021. Facial Expression Recognition: A Review of Trends and Techniques. IEEE Access, 9, pp.136944–136973. https://doi.org/10.1109/ACCESS.2021.3113464.

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep Learning. MIT Press book.

Gopalan, N.P., Bellamkonda, S. and Chaitanya, V.S., 2018. Facial Expression Recognition Using Geometric Landmark Points and Convolutional Neural Networks. In: Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018. IEEE. pp.1149–1153. https://doi.org/10.1109/ICIRCA.2018.8597226.

Grishchenko, I., Yan, G., Zanfir, A. and Bazavan, E.G., 2023. Mediapipe Blendshape V2 Model Card.

Khan, F., 2018. Facial Expression Recognition using Facial Landmark Detection and Feature Extraction via Neural Networks. [online] Available at: <http://arxiv.org/abs/1812.04510>.

Li, S. and Deng, W., 2022. Deep Facial Expression Recognition: A Survey. IEEE Transactions on Affective Computing, 13(3), pp.1195–1215. https://doi.org/10.1109/TAFFC.2020.2981446.

Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I. and Ave, F., 2010. The Extended Cohn-Kanade Dataset (CK): A complete dataset for action unit and emotion-specified expression. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, (July), pp.94–101. https://doi.org/10.1109/CVPRW.2010.5543262.

Munasinghe, M.I.N.P., 2018. Facial Expression Recognition Using Facial Landmarks and Random Forest Classifier. Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, pp.423–427. https://doi.org/10.1109/ICIS.2018.8466510.

Paidja, A.N.R. and Bachtiar, F.A., 2022. Engagement Emotion Classification through Facial Landmark Using Convolutional Neural Network. Proceedings - 2022 2nd International Conference on Information Technology and Education, ICIT and E 2022, pp.234–239. https://doi.org/10.1109/ICITE54466.2022.9759546.

Pang, Y., Liu, Z. and Yu, N., 2006. A new nonlinear feature extraction method for face recognition. Neurocomputing, 69(7-9 SPEC. ISS.), pp.949–953. https://doi.org/10.1016/j.neucom.2005.07.005.

Diterbitkan

20 Mar 2024

Cara Mengutip

Nainggolan, C. N., A. Bachtiar, F., & Setiawan, B. D. (2024). Klasifikasi Ekspresi Wajah Menggunakan Region Selected Facial Landmarks Extraction dan Convolutional Neural Network (CNN). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 8(13). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/13495
Loading...