Smart Wearable Untuk Klasifikasi Pose Latihan Squat Menggunakan Algoritme Random Forest Berbasis ESP32-S3
Abstrak
Naskah ini akan diterbitkan di Jurnal Intelligent Decision Technologies
Referensi
Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), 574. https://doi.org/10.3390/rs14030574
Blandeau, M., Guichard, R., Hubaut, R., & Leteneur, S. (2022). Two-Step Validation of a New Wireless Inertial Sensor System: Application in the Squat Motion. Technologies, 10(3), 72. https://doi.org/10.3390/technologies10030072
Blandeau, M., Guichard, R., Hubaut, R., & Leteneur, S. (2023). IMU positioning affects range of motion measurement during squat motion analysis. Journal of Biomechanics, 153, 111598. https://doi.org/10.1016/j.jbiomech.2023.111598
Horschig, A., Sonthana, K., & Neff, T. (2017). The squat bible: The ultimate guide to mastering the squat and finding your true strength. Squat University LLC.
Li, X., Liu, J., Huang, Y., Wang, D., & Miao, Y. (2022). Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion. Micromachines, 13(8), 1205. https://doi.org/10.3390/mi13081205
Mohd Sharif, N. A., Goh, S.-L., Usman, J., & Wan Safwani, W. K. Z. (2017). Biomechanical and functional efficacy of knee sleeves: A literature review. Physical Therapy in Sport, 28, 44–52. https://doi.org/10.1016/j.ptsp.2017.05.001
Myer, G. D., Kushner, A. M., Brent, J. L., Schoenfeld, B. J., Hugentobler, J., Lloyd, R. S., Vermeil, A., Chu, D. A., Harbin, J., & McGill, S. M. (2014). The Back Squat: A Proposed Assessment of Functional Deficits and Technical Factors That Limit Performance. Strength & Conditioning Journal, 36(6), 4–27. https://doi.org/10.1519/SSC.0000000000000103
Ravizza, M., Giani, L., Sheiban, F. J., Pedrocchi, A., DeWitt, J., & Ferrigno, G. (2023). IMU-based classification of resistive exercises for real-time training monitoring on board the international space station with potential telemedicine spin-off. PLOS ONE, 18(8), e0289777. https://doi.org/10.1371/journal.pone.0289777
Rosero-Montalvo, P. D., Dibujes, A., Vásquez-Ayala, C., Umaquinga-Criollo, A., Michilena, J. R., Suaréz, L., Flores, S., & Jaramillo, D. (2019). Intelligent System of Squat Analysis Exercise to Prevent Back Injuries. In M. Botto-Tobar, L. Barba-Maggi, J. González-Huerta, P. Villacrés-Cevallos, O. S. Gómez, & M. I. Uvidia-Fassler (Eds.), Information and Communication Technologies of Ecuador (TIC.EC) (Vol. 884, pp. 193–205). Springer International Publishing. https://doi.org/10.1007/978-3-030-02828-2_15
Strömbäck, E., Aasa, U., Gilenstam, K., & Berglund, L. (2018). Prevalence and Consequences of Injuries in Powerlifting: A Cross-sectional Study. Orthopaedic Journal of Sports Medicine, 6(5), 2325967118771016. https://doi.org/10.1177/2325967118771016
Whelan, D. F., O’Reilly, M. A., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs. Methods of Information in Medicine, 56(05), 361–369. https://doi.org/10.3414/ME16-01-0141
William, P., Lanke, G. R., Bordoloi, D., Shrivastava, A., Srivastavaa, A. P., & Deshmukh, S. V. (2023). Assessment of Human Activity Recognition based on Impact of Feature Extraction Prediction Accuracy. 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), 1–6. https://doi.org/10.1109/ICIEM59379.2023.10166247
Zheng, Q., Fu, X., Li, Y., & Cai, S. (2023). Adaptive Real-time Rectifying Exercise Porsture of Sport Rehabilitation System Based on MediaPipe. 2023 2nd International Conference on Health Big Data and Intelligent Healthcare (ICHIH), 176–181. https://doi.org/10.1109/ICHIH60370.2023.10396651
Zink, A. J., Whiting, W. C., Vincent, W. J., & Mclaine, A. J. (2001). The Effects of a Weight Belt on Trunk and Leg Muscle Activity and Joint Kinematics During the Squat Exercise.
Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), 574. https://doi.org/10.3390/rs14030574
Blandeau, M., Guichard, R., Hubaut, R., & Leteneur, S. (2022). Two-Step Validation of a New Wireless Inertial Sensor System: Application in the Squat Motion. Technologies, 10(3), 72. https://doi.org/10.3390/technologies10030072
Blandeau, M., Guichard, R., Hubaut, R., & Leteneur, S. (2023). IMU positioning affects range of motion measurement during squat motion analysis. Journal of Biomechanics, 153, 111598. https://doi.org/10.1016/j.jbiomech.2023.111598
Horschig, A., Sonthana, K., & Neff, T. (2017). The squat bible: The ultimate guide to mastering the squat and finding your true strength. Squat University LLC.
Li, X., Liu, J., Huang, Y., Wang, D., & Miao, Y. (2022). Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion. Micromachines, 13(8), 1205. https://doi.org/10.3390/mi13081205
Mohd Sharif, N. A., Goh, S.-L., Usman, J., & Wan Safwani, W. K. Z. (2017). Biomechanical and functional efficacy of knee sleeves: A literature review. Physical Therapy in Sport, 28, 44–52. https://doi.org/10.1016/j.ptsp.2017.05.001
Myer, G. D., Kushner, A. M., Brent, J. L., Schoenfeld, B. J., Hugentobler, J., Lloyd, R. S., Vermeil, A., Chu, D. A., Harbin, J., & McGill, S. M. (2014). The Back Squat: A Proposed Assessment of Functional Deficits and Technical Factors That Limit Performance. Strength & Conditioning Journal, 36(6), 4–27. https://doi.org/10.1519/SSC.0000000000000103
Ravizza, M., Giani, L., Sheiban, F. J., Pedrocchi, A., DeWitt, J., & Ferrigno, G. (2023). IMU-based classification of resistive exercises for real-time training monitoring on board the international space station with potential telemedicine spin-off. PLOS ONE, 18(8), e0289777. https://doi.org/10.1371/journal.pone.0289777
Rosero-Montalvo, P. D., Dibujes, A., Vásquez-Ayala, C., Umaquinga-Criollo, A., Michilena, J. R., Suaréz, L., Flores, S., & Jaramillo, D. (2019). Intelligent System of Squat Analysis Exercise to Prevent Back Injuries. In M. Botto-Tobar, L. Barba-Maggi, J. González-Huerta, P. Villacrés-Cevallos, O. S. Gómez, & M. I. Uvidia-Fassler (Eds.), Information and Communication Technologies of Ecuador (TIC.EC) (Vol. 884, pp. 193–205). Springer International Publishing. https://doi.org/10.1007/978-3-030-02828-2_15
Strömbäck, E., Aasa, U., Gilenstam, K., & Berglund, L. (2018). Prevalence and Consequences of Injuries in Powerlifting: A Cross-sectional Study. Orthopaedic Journal of Sports Medicine, 6(5), 2325967118771016. https://doi.org/10.1177/2325967118771016
Whelan, D. F., O’Reilly, M. A., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs. Methods of Information in Medicine, 56(05), 361–369. https://doi.org/10.3414/ME16-01-0141
William, P., Lanke, G. R., Bordoloi, D., Shrivastava, A., Srivastavaa, A. P., & Deshmukh, S. V. (2023). Assessment of Human Activity Recognition based on Impact of Feature Extraction Prediction Accuracy. 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), 1–6. https://doi.org/10.1109/ICIEM59379.2023.10166247
Zheng, Q., Fu, X., Li, Y., & Cai, S. (2023). Adaptive Real-time Rectifying Exercise Porsture of Sport Rehabilitation System Based on MediaPipe. 2023 2nd International Conference on Health Big Data and Intelligent Healthcare (ICHIH), 176–181. https://doi.org/10.1109/ICHIH60370.2023.10396651
Zink, A. J., Whiting, W. C., Vincent, W. J., & Mclaine, A. J. (2001). The Effects of a Weight Belt on Trunk and Leg Muscle Activity and Joint Kinematics During the Squat Exercise.
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.