Perangkat Lunak Otomasi Simulasi Penerimaan Daya Dinamis pada Wireless Power Transfer
Kata Kunci:
Kumparan, LTSpice, Nirkabel, Python, ResistansiAbstrak
Transfer daya induktif (Inductive Power Transfer/IPT) merupakan teknologi yang memungkinkan pengisian daya tanpa kabel dengan memanfaatkan medan magnet. Penelitian ini mensimulasikan rangkaian IPT untuk kendaraan elektrik menggunakan perangkat lunak LTSpice. Tujuan utama dari penelitian ini adalah untuk menganalisis pengaruh resistansi internal kumparan terhadap efisiensi transfer daya nirkabel. Metode digunakan menggunakan simulasi berbasis perangkat lunak LTSpice dan hasil simulasi didapat dari program berbasis bahasa pemrograman Python. Simulasi dilakukan untuk aplikasi kendaraan listrik terhadap charging pad dengan tiga buah kumparan, dengan rentang jarak kendaraan terhadap charging pad mulai dari 0,1 hingga 0,9. Hasil simulasi menunjukkan bahwa efisiensi transfer daya nirkabel diperoleh pada saat posisi kendaraan di coil pertama charging pad mendapatkan rata-rata efisiensi sebesar 97,56%, lalu saat kendaraan berada di kumparan kedua charging pad dengan rata-rata efisiensi sebesar 80,72%, dan saat kendaraan berada di kumparan ketiga charging pad dengan rata-rata efisiensi sebesar 63,88%.
Referensi
Agbinya, Johnson I., Ed. (2012). Wireless Power Transfer. River Publishers. ISBN 978-8792329233.
Ahmad, R. N., Suryoatmojo, H., & Riawan, D. C. (2023). Rancang Bangun Pengisi Daya Untuk Baterai Lithium-Polymer Dengan Mempertimbangkan Kompensasi Resistansi. Transmisi: Jurnal Ilmiah Teknik Elektro, 25(2), 48-57.
Ai, Y., Hu, X., Li, X., & Zhang, X. (2021). Analysis and study of compact inductive power transfer systems for EV charging. Journal of Power Electronics, 21(5), 829–839.
Arpitha, C. S., Jadoun, V. K., Jayalakshmi, N. S., & Kanwar, N. (2022). Inductive Power Transfer Modelling for Wireless Charging of Electric Vehicles. Lecture Notes in Electrical Engineering, 863.
Brocard, G. (2013). The LTSpice IV Simulator: Manual, Methods and Applications. Würth Elektronik. ISBN: 3899292588, 9783899292589
Hendinata, L. K., (2021). Simulasi Sistem Transfer Daya Nirkabel Berbasis Kopling Magnetik. 2. 71-74. 10.52158/jasens.v2i2.252
Hernández-Robles, I. A., González-Ramírez, X., Lozano-García, J. M., & Gutiérrez-Martínez, V. J. (2019). Analysis and simulation of relevant parameters for optimal wireless power transfer. Electrical Engineering, 101(3), 867–875.
Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration. Renewable & Sustainable Energy Reviews, 19, 247-254
Scrosati, B., Abraham, K. M., van Schalkwijk, W. A., & Hassoun, J. (Eds.). (2013). Lithium Batteries: Advanced Technologies and Applications. Wiley.
Shinohara, N. (2018). Wireless Power Transfer: Theory, Technology, and Applications. Institution of Engineering & Technology.
Tavakoli, R., & Pantic, Z. (2018). Analysis, design, and demonstration of a 25-kW dynamic wireless charging system for roadway electric vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(3), 1378-1393. https://doi.org/10.1109/JESTPE.2017.2761763
Wang, H.-W., Wang, N. X., & Lang, J. H. (2019). Simulation and Modeling of a Robust Wireless Transfer System for Multi-User Charging. Journal of Physics: Conference Series, 1407, 012104
Agbinya, Johnson I., Ed. (2012). Wireless Power Transfer. River Publishers. ISBN 978-8792329233.
Ahmad, R. N., Suryoatmojo, H., & Riawan, D. C. (2023). Rancang Bangun Pengisi Daya Untuk Baterai Lithium-Polymer Dengan Mempertimbangkan Kompensasi Resistansi. Transmisi: Jurnal Ilmiah Teknik Elektro, 25(2), 48-57.
Ai, Y., Hu, X., Li, X., & Zhang, X. (2021). Analysis and study of compact inductive power transfer systems for EV charging. Journal of Power Electronics, 21(5), 829–839.
Arpitha, C. S., Jadoun, V. K., Jayalakshmi, N. S., & Kanwar, N. (2022). Inductive Power Transfer Modelling for Wireless Charging of Electric Vehicles. Lecture Notes in Electrical Engineering, 863.
Brocard, G. (2013). The LTSpice IV Simulator: Manual, Methods and Applications. Würth Elektronik. ISBN: 3899292588, 9783899292589
Hendinata, L. K., (2021). Simulasi Sistem Transfer Daya Nirkabel Berbasis Kopling Magnetik. 2. 71-74. 10.52158/jasens.v2i2.252
Hernández-Robles, I. A., González-Ramírez, X., Lozano-García, J. M., & Gutiérrez-Martínez, V. J. (2019). Analysis and simulation of relevant parameters for optimal wireless power transfer. Electrical Engineering, 101(3), 867–875.
Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration. Renewable & Sustainable Energy Reviews, 19, 247-254
Scrosati, B., Abraham, K. M., van Schalkwijk, W. A., & Hassoun, J. (Eds.). (2013). Lithium Batteries: Advanced Technologies and Applications. Wiley.
Shinohara, N. (2018). Wireless Power Transfer: Theory, Technology, and Applications. Institution of Engineering & Technology.
Tavakoli, R., & Pantic, Z. (2018). Analysis, design, and demonstration of a 25-kW dynamic wireless charging system for roadway electric vehicles. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(3), 1378-1393. https://doi.org/10.1109/JESTPE.2017.2761763
Wang, H.-W., Wang, N. X., & Lang, J. H. (2019). Simulation and Modeling of a Robust Wireless Transfer System for Multi-User Charging. Journal of Physics: Conference Series, 1407, 012104
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.