Sistem Monitoring Volitional Fatigue Menggunakan Metode Random Forest dengan Fitur Root Mean Square dan Integrated Electromyogram

Sistem Monitoring Volitional Fatigue Menggunakan Metode Random Forest dengan Fitur Root Mean Square dan Integrated Electromyogram

Penulis

  • Nathaniel Audrian Universitas Brawijaya
  • Edita Rosana Widasari Universitas Brawijaya

Kata Kunci:

electromyography, volitional fatigue, kelelahan otot, RMS, IEMG, random forest

Abstrak

Naskah ini akan diterbitkan pada SIET 2024

Referensi

Ashfaq, A., Cronin, N. & Müller, P., 2022. Recent advances in machine learning for maximal oxygen uptake (VO2 max) prediction: A review. Informatics in Medicine Unlocked , Volume 28.

Chen, S. et al., 2021. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas. Computers in Biology and Medicine, Volume 133.

de Cheveigné, A. & Nelken, I., 2019. Filters: When, Why, and How (Not) to Use Them. Neuron, 102(2), pp. 280-293.

Ebied, A., Awadallah, A. M., Abbass, M. A. & El-Sharkawy, Y., 2020. Upper Limb Muscle Fatigue Analysis Using Multi-channel Surface EMG. Giza, IEEE.

Elshafei, M. & Shihab, E., 2021. Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables. Sensors, 21(3).

Felton, R., 2022. 11 Mistakes Personal Trainers Make. [Online] Tersedia di: https://www.origym.co.uk/blog/mistakes-personal-trainers-make/ [Diakses 23 Juli 2024].

Gavin, J., 1996. Personal Trainers' Perceptions of Role Responsibilities, Conflicts, and Boundaries. Ethics & Behavior, 6(1), pp. 55-69.

González-Izal, M., Malanda, A., Gorostiaga, E. & Izquierdo, M., 2012. Electromyographic models to assess muscle fatigue. Journal of Electromyography and Kinesiology, 22(4), pp. 501-512.

Li, N. et al., 2024. Non-invasive Techniques for Muscle Fatigue Monitoring: A Comprehensive Survey. ACM Computing Surveys.

Melnikov, A. & Fette, I., 2011. The WebSocket Protocol. [Online] Tersedia di: https://www.rfc-editor.org/rfc/rfc6455.txt [Diakses 25 Juli 2024].

Merletti, R. & Cerone, G. L., 2020. Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices. Journal of Electromyography and Kinesiology, p. 102440.

Micromodeler, 2013. Introduction to Digital Signal Processing with MicroModeler DSP. [Online] Tersedia di: https://www.micromodeler.com/articles/IntroductionToDSP/ [Diakses 11 Juli 2024].

Morton, R. W., Phillips, S. M. & Phillips, S. M., 2019. Training for strength and hypertrophy: an evidence-based approach. Current Opinion in Physiology, Volume 10, pp. 90-95.

Myoware, 2022. Myoware 2.0 Advanced Guide. [Online] Tersedia di: https://myoware.com/wp-content/uploads/2022/03/MyoWare_v2_AdvancedGuide-Updated.pdf [Diakses 7 Juli 2024].

Newsome, A. M. et al., 2024. 2024 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSM's Health & Fitness Journal, 28(1), pp. 14-26.

Phinyomark, A., Phukpattaranont, P. & Limsakul, C., 2012. Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 39(8), pp. 7420-7431.

Snow, E. L. & Lanik, W. E., 2024. Structural and functional analysis of bilateral five-headed biceps brachii. Translational Research in Anatomy, Volume 35.

Subasi, A., 2020. Machine learning techniques. In: Practical Machine Learning for Data Analysis Using Python. s.l.:Academic Press, pp. 91-202.

Sun, J. et al., 2022. Application of Surface Electromyography in Exercise Fatigue: A Review. Frontiers in Systems Neuroscience, Volume 16.

Susto, G. A., Cenedese, A. & Terzi, M., 2018. Time-Series Classification Methods: Review and Applications to Power Systems Data. Big Data Application in Power Systems, pp. 179-220.

Viecelli, C. & Aguayo, D., 2022. May the Force and Mass Be With You—Evidence-Based Contribution of Mechano-Biological Descriptors of Resistance Exercise. Frontiers in Physiology, Volume 12.

Diterbitkan

05 Agu 2024

Cara Mengutip

Audrian, N., & Widasari, E. R. (2024). Sistem Monitoring Volitional Fatigue Menggunakan Metode Random Forest dengan Fitur Root Mean Square dan Integrated Electromyogram. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 8(13). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14025
Loading...