Implementasi Wearable Device Untuk Sistem Pendeteksi Kelelahan Otot Biceps Menggunakan Metode Support Vector Machine

Implementasi Wearable Device Untuk Sistem Pendeteksi Kelelahan Otot Biceps Menggunakan Metode Support Vector Machine

Penulis

  • Tetron Dasamuka Mahasiswa UB
  • Rosana Dosen Pembimbing

Kata Kunci:

Wearable Device, Pendeteksi kelelahan otot, Support Vector Machine (SVM), Electromyography (EMG), Root Mean Square (RMS), Otot Biceps, Sistem Pencegahan Cedera, Akurasi deteksi kelelahan

Abstrak

Kelelahan adalah gejala umum yang dialami oleh banyak orang dan berhubungan dengan banyak kondisi kesehatan. Ini adalah kondisi dimana seseorang mengalami perasaan lemah, kekurangan energi yang signifikan dan merasa sulit untuk melakukan aktivitas sehari-hari. Kelelahan otot adalah penurunan kekuatan maksimal atau produksi tenaga karena aktivitas kontraktil, dan dapat disebabkan oleh berbagai gangguan neurologis, otot, kardiovaskular, penuaan, dan kelemahan. Tujuan dari penelitian ini adalah mengevaluasi tingkat akurasi pembacaan Myoware Muscle Sensor dalam membaca aktivitas otot untuk mendeteksi kelelahan otot. Evaluasi akurasi sensor dibutuhkan karena hasil pembacaan sensor akan langsung mempengaruhi validitas temuan serta efektivitas keseluruhan sistem yang digunakan pada penelitian ini. Hasil penelitian menunjukkan Myoware Muscle Sensor mampu membaca aktivitas otot biceps dengan baik sebesar 100%, mengandalkan elektromyografi (EMG) untuk mendeteksi sinyal listrik yang dihasilkan oleh kontraksi otot. Penggunaan algoritma Support Vector Machine (SVM) dengan fitur Root Mean Square (RMS) dalam sistem pendeteksi kelelahan otot biceps menunjukkan tingkat akurasi yang tinggi sebesar 84%. Waktu komputasi mikrokontroler dalam mengolah data EMG dan menjalankan algoritma SVM cukup efisien untuk kebutuhan real-time dengan rata-rata 650ms. Sistem keseluruhan yang dirancang untuk mendeteksi kelelahan otot, mulai dari sensor input, pemrosesan sinyal, hingga output hasil klasifikasi, 100% bekerja dengan baik dan sesuai harapan.

Referensi

guru, t.thn. kalibr-kabelya-awg.jpg. [Online]

Available at: https://220.guru/wp-content/uploads/2020/03/kalibr-kabelya-awg.jpg

adafruit, 2021. Tactile Button switch (6mm) x 20 pack. [Online]

Available at: https://www.adafruit.com/product/367

[Diakses 12 7 2024].

adafruit, t.thn. Muscle Sensor Surface EMG Electrodes - H124SG Covidien. [Online]

Available at: https://www.adafruit.com/product/2773

[Diakses 12 7 2024].

Advancer Technologies, 2023. MYOWARE 2.0 Muscle Sensor. [Online]

Available at: https://myoware.com/products/muscle-sensor/

[Diakses 16 March 2023].

Agarwal, J. & Gopal, K., 2020. Variations of Biceps Brachii Muscle and its Clinical Importance. Journal of Clinical and Diagnostic Research, XIV(7), pp. 1-3.

alokesh985, 2023. geeksforgeeks. [Online]

Available at: https://www.geeksforgeeks.org/introduction-to-support-vector-machines-svm/

[Diakses 21 March 2023].

Arduino, 2023. Retired Products & Legacy Documentation > Arduino Pro Mini. [Online]

Available at: https://docs.arduino.cc/retired/boards/arduino-pro-mini

[Diakses 26 March 2023].

Barma, M. D. & Hottigoudar, S. Y., 2022. Accessory Slips from Biceps Brachii Distal Tendon - A Case Report. International Journal of Current Science Research and Review, V(10), pp. 4039-4042.

Bawa, A. & Banitsas, K., 2022. Design Validation of a Low-Cost EMG Sensor Compared to a Commercial-Based System for Measuring Muscle Activity and Fatigue. sensors, 22(5799), pp. 1-14.

CDC, 2022. Centers for Disease Control and Prevention : NIOSH Program Portfolio : Musculoskeletal Health Program. [Online]

Available at: https://www.cdc.gov/niosh/programs/msd

[Diakses 13 February 2024].

Chandarana, H. M., 2008. Clinical Laboratory Equipments. Dalam: Bio-Medical Electronics. s.l.:Nirali Prakashan, pp. 5-9.

Chowdhury, R. H. et al., 2013. Surface Electromyography Signal Processing and Classification Techniques. Sensors, 13(9), pp. 12431-12466.

Cifrek, M., Medved, V., Tonkovic´, S. & Ostojic´, S., 2009. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, pp. 327-340.

CIRCUITO.IO, t.thn. CIRCUITO.IO. [Online]

Available at: https://www.circuito.io/app?components=97,10218,11114,133979,216577,956215

Clinic, C., 2018. Biceps Tendon Injuries. [Online]

Available at: https://my.clevelandclinic.org/health/articles/14534-biceps-tendon-injuries

[Diakses 15 February 2024].

Costa Junior, J. D., de Seixas, J. M. & Miranda de Sá, A. M. F. L., 2019. A template subtraction method for reducing electrocardiographic artifacts in EMG signals of low intensity. Biomedical Signal Processing and Control, January, Volume 47, pp. 380-386.

Daffa, A. Z., Widasari, E. R. & Syauqy, D., 2023. Analisis Perbandingan Metode Ekstraksi Fitur Mean Absolute Value, Root Mean Square, dan Variance untuk Deteksi Kelelahan Otot Biceps Brachii. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, VII(7).

Elshafei, M. & Shihab, E., 2021. Towards Detecting Biceps Muscle Fatigue in Gym Activity. Sensors, pp. 1-18.

GUVEN, Y. et al., 2017. Understanding the Concept of Microcontroller Based Systems To Choose The Best Hardware For Applications. International Journal of Engineering And Science , 6(9), pp. 38-44.

Hook, J., 2014. Smoothing non-smooth systems with low-pass filters. Physica D, Volume 269, pp. 76-85.

Isravel, D. P., Arulkumar, D., Raimond, K. & Issac, B., 2020. Chapter 4 - A novel framework for quality care in assisting chronically impaired patients with ubiquitous computing and ambient intelligence technologies. Systems Simulation and Modeling for Cloud Computing and Big Data Applications, pp. 61-79.

John, 2021. Use 28AWG Cable to Optimize Your Network. [Online]

Available at: https://community.fs.com/article/use-28awg-cable-in-data-center.html

[Diakses 12 7 2024].

LLC, A. T., 2022. Advanced Guide. [Online]

Available at: https://myoware.com/wp-content/uploads/2022/03/MyoWare_v2_AdvancedGuide-Updated.pdf

[Diakses 12 7 2024].

Ltd, T., 2024. TeachMeAnatomy. [Online]

Available at: https://teachmeanatomy.info

[Diakses 13 February 2024].

MathWorks, I., t.thn. mathworks.com. [Online]

Available at: https://www.mathworks.com/

myoware, 2023. [Wawancara] (13 October 2023).

Okamoto, M. & Murao, K., 2023. PPG2EMG: Estimating Upper-Arm Muscle Activities and EMG from Wrist PPG Values. sensors, 4(1782), p. 23.

Patient, R. M., 2017. rehabmypatient. [Online]

Available at: https://www.rehabmypatient.com/shoulder/biceps-tendon-tear-at-the-shoulder

[Diakses 13 February 2024].

pkfcabrera.com, t.thn. LED Chip WS2812B SK6812 S 5050 I A Dl RGB 5V. [Online]

Available at: https://www.superlightingled.com/images/LED%20Lights%20Images/SK6812-RGBW-LED-CHIP_3.jpg

Prakash, A., Sharma, S. & Sharma, N., 2019. A compact sized surface EMG sensor for myoelectric hand prosthesis. Biomedical Engineering Letters, Issue 9, p. 467–479.

Seneviratne, S. et al., 2017. A Survey of Wearable Devices and Challenges. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, pp. 2573-2620.

Serov, A. N. et al., 2023. A Technique for Improving the Accuracy of RMS Measurement for the Low-Pass Filtration Method. 2023 International Conference on Electrical Engineering and Photonics (EExPolytech), 19-20 October.pp. 144-147.

Subasi, A., 2013. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Computers in Biology and Medicine, Volume 43, pp. 576-586.

Teja, K., Tiwari, R. & Mohanty, S., 2020. Adaptive denoising of ECG using EMD, EEMD and CEEMDAN signal processing techniques. Journal of Physics: Conference Series, Volume 1706, p. 012077.

Tepe, C. & Demir, M. C., 2022. Real-Time Classification of EMG Myo Armband Data Using Support Vector Machine. IRBM, pp. 300-308.

Udvabony, t.thn. SELFLOCK 3 PIN SQUARE 6X6X8MM 3 PIN 0.1A 30V DC MINI SELF-LOCKING SWITCH ON OFF MULTIMETER SWITCH MICRO SWITCH SELF LOCK SWITCH ON/OFF LATCHING SWITCH. [Online]

Available at: https://udvabony.com/product/self-lock-3-pin-square-8x8x12mm-3pin-dip-0-1a/

Ülkir, O., Gökmen, G. & Kaplanoğlu, E., 2017. Emg Signal Classification Using Fuzzy Logic. BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, 5(2), pp. 97-101.

Wang, S., Tang, H., Wang, B. & Mo, J., 2021. Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy. Biomedical Signal Processing and Control, pp. 1-9.

Wan, J.-j.et al., 2017. Muscle fatigue: general understanding and treatment. Experimental & Molecular Medicine, pp. 1-8.

Widasari, E. R., Miyauchi, R., Tamura, H. & Tanno, K., 2015. A Wireless Surface Electromyogram Monitoring System Using Smartphone and Its Application to Maintain Biceps Muscle. IEEE International Conference on Systems, Man, and Cybernetics, pp. 2378-2383.

Ye, S., Zhang, Y. & Yu, P., 2019. Applications of titanium in the electronic industry. Titanium for Consumer Applications, pp. 269-278.

Yousif, H. A. et al., 2019. Assessment of Muscles Fatigue Based on Surface EMG Signals Using Machine Learning and Statistical Approaches:. Materials Science and Engineering, pp. 1-9.

Unduhan

Diterbitkan

15 Agu 2024

Cara Mengutip

Dasamuka, T., & Widasari, E. (2024). Implementasi Wearable Device Untuk Sistem Pendeteksi Kelelahan Otot Biceps Menggunakan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 8(9). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14104

Terbitan

Bagian

Artikel
Loading...