Deteksi Mutasi Pada Kanker Paru Melalui Citra CT-Scan Penerapan Model Algoritma Convolutional Neural Networks (CNN) dan Optimizer Adam
Kata Kunci:
kanker paru, mutasi, ct-scan, cnn, vgg-16, pre-trained, transfer learningAbstrak
Kanker paru-paru adalah penyebab utama kematian pada pria dan wanita, dengan angka kematian melebihi gabungan kematian akibat kanker usus besar, payudara, dan prostat. Sekitar 14% dari semua diagnosis kanker adalah kanker paru-paru, dan deteksi dini masih menjadi tantangan besar. Kanker paru sering mengalami mutasi genetik yang menyebabkan sel-sel kanker berperilaku berbeda dari sel normal. Deteksi dini mutasi penting karena pengobatan yang tepat dapat mencegah perkembangan kanker lebih lanjut. Kemajuan dalam onkologi, seperti teknik pencitraan yang lebih baik dan penggunaan penanda molekuler, serta kecerdasan buatan (AI), telah meningkatkan diagnosis dan manajemen kanker paru-paru. AI, terutama deep learning dengan algoritma CNN seperti VGG-16, efektif dalam mendeteksi kanker pada gambar jaringan paru-paru. Penelitian ini menggunakan CNN Model VGG-16 pre-trained dengan data CT scan dari Rumah Sakit Syaiful Anwar untuk mendeteksi mutasi pada kanker paru-paru. Dengan data 39362 slice CT-scan dari 20 pasien, hasil menunjukkan bahwa transfer learning dengan VGG-16 dan metode optimasi Adam menghasilkan validation loss sebesar 0.0085 dan validation accuracy sebesar 99.70%, serta precision/recall, dan specificity model sebesar 99%. Saran untuk penelitian lebih lanjut adalah mengeksplorasi transfer learning dengan penambahan layer dan mencoba arsitektur CNN yang lebih dalam untuk meningkatkan nilai performansi.
Referensi
Gandhi, Z., Gurram, P., Amgai, B., Lekkala, S. P., Lokhandwala, A., Manne, S., Mohammed, A., Koshiya, H., Dewaswala, N., Desai, R., Bhopalwala, H., Ganti, S., & Surani, S. (2023). Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes. In Cancers (Vol. 15, Issue 21). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cancers15215236
Hrizi, D., Tbarki, K., & Elasmi, S. (2023). Lung cancer detection and classification using CNN and image segmentation. 2023 IEEE Tenth International Conference on Communications and Networking (ComNet), 1–10. https://doi.org/10.1109/ComNet60156.2023.10366739
Kapoor, V., Mittal, A., Garg, S., Diwakar, M., Mishra, A. K., & Singh, P. (2023). Lung Cancer Detection Using VGG16 and CNN. 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), 758–762. https://doi.org/10.1109/AIC57670.2023.10263901
Kido, S., Hirano, Y., & Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). 2018 International Workshop on Advanced Image Technology (IWAIT), 1–4. https://doi.org/10.1109/IWAIT.2018.8369798
Rajasekar, V., Vaishnnave, M. P., Premkumar, S., Sarveshwaran, V., & Rangaraaj, V. (2023). Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques. Results in Engineering, 18, 101111. https://doi.org/https://doi.org/10.1016/j.rineng.2023.101111
Tripathi, S., Moyer, E. J., Augustin, A. I., Zavalny, A., Dheer, S., Sukumaran, R., Schwartz, D., Gorski, B., Dako, F., & Kim, E. (2022). RadGenNets: Deep learning-based radiogenomics model for gene mutation prediction in lung cancer. Informatics in Medicine Unlocked, 33, 101062. https://doi.org/https://doi.org/10.1016/j.imu.2022.101062
Crnogorac-Jurcevic, T. (2022). Non-Invasive Biomarkers for Early Lung Cancer Detection. *Cancers, 14*(23), 5782. https://doi.org/10.3390/cancers14235782
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11141 LNCS, 270–279. https://doi.org/10.1007/978-3-030-01424-7_27
Gandhi, Z., Gurram, P., Amgai, B., Lekkala, S. P., Lokhandwala, A., Manne, S., Mohammed, A., Koshiya, H., Dewaswala, N., Desai, R., Bhopalwala, H., Ganti, S., & Surani, S. (2023). Artificial Intelligence and Lung Cancer: Impact on Improving Patient Outcomes. In Cancers (Vol. 15, Issue 21). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cancers15215236
Hrizi, D., Tbarki, K., & Elasmi, S. (2023). Lung cancer detection and classification using CNN and image segmentation. 2023 IEEE Tenth International Conference on Communications and Networking (ComNet), 1–10. https://doi.org/10.1109/ComNet60156.2023.10366739
Kapoor, V., Mittal, A., Garg, S., Diwakar, M., Mishra, A. K., & Singh, P. (2023). Lung Cancer Detection Using VGG16 and CNN. 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), 758–762. https://doi.org/10.1109/AIC57670.2023.10263901
Kido, S., Hirano, Y., & Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). 2018 International Workshop on Advanced Image Technology (IWAIT), 1–4. https://doi.org/10.1109/IWAIT.2018.8369798
Rajasekar, V., Vaishnnave, M. P., Premkumar, S., Sarveshwaran, V., & Rangaraaj, V. (2023). Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques. Results in Engineering, 18, 101111. https://doi.org/https://doi.org/10.1016/j.rineng.2023.101111
Tripathi, S., Moyer, E. J., Augustin, A. I., Zavalny, A., Dheer, S., Sukumaran, R., Schwartz, D., Gorski, B., Dako, F., & Kim, E. (2022). RadGenNets: Deep learning-based radiogenomics model for gene mutation prediction in lung cancer. Informatics in Medicine Unlocked, 33, 101062. https://doi.org/https://doi.org/10.1016/j.imu.2022.101062
Crnogorac-Jurcevic, T. (2022). Non-Invasive Biomarkers for Early Lung Cancer Detection. *Cancers, 14*(23), 5782. https://doi.org/10.3390/cancers14235782
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11141 LNCS, 270–279. https://doi.org/10.1007/978-3-030-01424-7_27
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.