Klasifikasi Emosi Pada Raut Wajah Pelajar Menggunakan Ekstraktor Fitur Face Mesh Dan Metode Support Vector Machine

Klasifikasi Emosi Pada Raut Wajah Pelajar Menggunakan Ekstraktor Fitur Face Mesh Dan Metode Support Vector Machine

Penulis

  • Muhammad Nugraha Delta Revanza Universitas Brawijaya
  • Fitra Abdurrachman Bachtiar
  • Budi Darma Setiawan

Kata Kunci:

pengenalan emosi, facial landmark, hyperparameter tuning, SVM, confusion matrix

Abstrak

Naskah ini akan diterbitkan di Konferensi Nasional SENTRIN

Referensi

Anon. 2022. Facial Landmark Detection with Mediapipe & Creating Animated Snapchat Filters. International Journal For Innovative Engineering and Management Research, pp.98–107. https://doi.org/10.48047/IJIEMR/V11/I06/10.

Bhatia, S., Tomar, U. and Jain, A.V., 2021. Comparing SVM and Neural Networks’ performance in Face Detection. In: 2021 International Conference on Intelligent Technologies (CONIT). [online] 2021 International Conference on Intelligent Technologies (CONIT). Hubli, India: IEEE. pp.1–7. https://doi.org/10.1109/CONIT51480.2021.9498383.

Gupta, A., D’Cunha, A., Awasthi, K. and Balasubramanian, V., 2022. DAiSEE: Towards User Engagement Recognition in the Wild. Available at: <http://arxiv.org/abs/1609.01885> [Accessed 8 August 2024].

Krithika L.B and Lakshmi Priya GG, 2016. Student Emotion Recognition System (SERS) for e-learning Improvement Based on Learner Concentration Metric. Procedia Computer Science, 85, pp.767–776. https://doi.org/10.1016/j.procs.2016.05.264.

Lek, J.X.-Y. and Teo, J., 2023. Academic Emotion Classification Using FER: A Systematic Review. Human Behavior and Emerging Technologies, 2023, pp.1–27. https://doi.org/10.1155/2023/9790005.

Nalepa, J. and Kawulok, M., 2019. Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52(2), pp.857–900. https://doi.org/10.1007/s10462-017-9611-1.

Nurrahma Rosanti Paidja, A. and Bachtiar, F.A., 2022. Engagement Emotion Classification through Facial Landmark Using Convolutional Neural Network. In: 2022 2nd International Conference on Information Technology and Education (ICIT&E). [online] 2022 2nd International Conference on Information Technology and Education (ICIT&E). Malang, Indonesia: IEEE. pp.234–239. https://doi.org/10.1109/ICITE54466.2022.9759546.

Patil, M. and Kagalkar, R., 2015. An Automatic Approach for Translating Simple Images into Text Descriptions and Speech for Visually Impaired People. International Journal of Computer Applications, 118(3), pp.14–19. https://doi.org/10.5120/20725-3080.

Siam, A.I., Soliman, N.F., Algarni, A.D., Abd El-Samie, F.E. and Sedik, A., 2022. Deploying Machine Learning Techniques for Human Emotion Detection. Computational Intelligence and Neuroscience, 2022, pp.1–16. https://doi.org/10.1155/2022/8032673.

Solanki, N. and Mandal, S., 2022. Engagement Analysis Using DAiSEE Dataset. In: 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). [online] 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). Singapore, Singapore: IEEE. pp.223–228. https://doi.org/10.1109/ICARCV57592.2022.10004250.

Sun, Y., Wong, A.K.C. and Kamel, M.S., 2009. CLASSIFICATION OF IMBALANCED DATA: A REVIEW. International Journal of Pattern Recognition and Artificial Intelligence, 23(04), pp.687–719. https://doi.org/10.1142/S0218001409007326.

Thuseethan, S., Rajasegarar, S. and Yearwood, J., 2019. Detecting Micro-expression Intensity Changes from Videos Based on Hybrid Deep CNN. In: Q. Yang, Z.-H. Zhou, Z. Gong, M.-L. Zhang and S.-J. Huang, eds. Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science. [online] Cham: Springer International Publishing. pp.387–399. https://doi.org/10.1007/978-3-030-16142-2_30.

Whitehill, J., Serpell, Z., Lin, Y.-C., Foster, A. and Movellan, J.R., 2014. The Faces of Engagement: Automatic Recognition of Student Engagementfrom Facial Expressions. IEEE Transactions on Affective Computing, 5(1), pp.86–98. https://doi.org/10.1109/TAFFC.2014.2316163.

Diterbitkan

30 Agu 2024

Cara Mengutip

Revanza, M. N. D., Bachtiar, F. A., & Setiawan, B. D. (2024). Klasifikasi Emosi Pada Raut Wajah Pelajar Menggunakan Ekstraktor Fitur Face Mesh Dan Metode Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 8(13). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14178
Loading...