Analisis Performa Arduino Uno Dalam Embedded System Berbasis RFID Terhadap Algoritma Enkripsi SKINNY

Analisis Performa Arduino Uno Dalam Embedded System Berbasis RFID Terhadap Algoritma Enkripsi SKINNY

Penulis

  • Muhammad Ghifari Universitas Brawijaya
  • Barlian Henryranu Prasetio

Kata Kunci:

SKINNY, algoritma enkripsi ringan, RFID, performa sistem tertanam, IoT

Abstrak

Penelitian ini menganalisis performa algoritma enkripsi SKINNY pada embedded system berbasis RFID untuk menilai efisiensi dan stabilitasnya dalam penggunaan memori (RAM dan Flash), konsumsi daya, dan waktu eksekusi. Dengan menggunakan Arduino Uno, penelitian ini mencatat metrik performa pada berbagai ukuran data (16 hingga 304 byte). Hasil menunjukkan stabilitas dan efisiensi algoritma SKINNY pada parameter yang diuji, termasuk penggunaan daya yang konsisten (~0,026–0,03 W) dan waktu eksekusi yang meningkat secara linear dengan ukuran data. Uji Kruskal-Wallis mengkonfirmasi tidak adanya perbedaan signifikan pada performa berdasarkan ukuran data. Algoritma SKINNY terbukti layak untuk aplikasi IoT yang membutuhkan keamanan data dengan efisiensi tinggi. 

Referensi

Fortune Business Insights. (2024, November 4). Internet of Things [IoT] Market

Size, Share, Growth, Trends, 2032. www.fortunebusinessinsights.com.

Retrieved November 25, 2024, from

https://www.fortunebusinessinsights.com/industry-reports/internet-of

things-iot-market-100307

Khan, N. A., Azlan Awang, & Samsul Ariffin Abdul Karim. (2022). Security in

Internet of Things: A Review. In IEEE Access (Vol. 10, p. 104649).

https://doi.org/10.1109/ACCESS.2022.3209355

Cortier, V., Gaudry, P., & Glondu, S. (2019). Belenios: A Simple Private and

Verifiable Electronic Voting System. In Lecture notes in computer science

(pp. 214–238).

https://doi.org/10.1007/978-3-030-19052-1_14

´Angel Longueira-Romero, Rosa Iglesias, & Inaki Garitano. (2020, July 20). How to

quantify the security level of embedded systems? A Taxonomy of Security

Metrics.

IEEE

Conference

Publication

https://ieeexplore.ieee.org/document/9442219

|

IEEE

Xplore.

Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight

Cryptography Algorithms for Resource-Constrained IoT Devices: A review,

comparison and research opportunities. IEEE Access, 9, 28177–28193.

https://doi.org/10.1109/access.2021.3052867

Regla, A. I., & Festijo, E. D. (2022). Performance Analysis of Light-weight

Cryptographic Algorithms for Internet of Things (IoT) Applications: A

Systematic Review. 2022 IEEE 7th International Conference for Convergence

in

Technology

(I2CT),

https://doi.org/10.1109/i2ct54291.2022.9824108

,

–5.

Feng, X., Li, S., & Institute of Microelectronics, Tsinghua University, Beijing, China.

(2016). An area-efficient FPGA Implementation of SKINNY Block Cipher for

Lightweight Application [Journal-article].

https://doi.org/10.1109/EDSSC.2017.8126437

Beierle, C., Jean, J., K¨Olbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,

Sasdrich, P., Sim, S. M., Horst G¨ortz Institute for IT Security, Ruhr-Universit¨at

Bochum, Germany, School of Physical and Mathematical Sciences, Nanyang

Technological University, Singapore, DTU Compute, Technical University of

Denmark, Denmark, & NTT Secure Platform Laboratories, Japan. (2016). The

SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS (FullVersion) [Journal-article]. CRYPTO 2016. https://doi.org/10.1007/978-3-662

-5_5

Ge, J., Xu, Y., Liu, R., Si, E., Shang, N., & Wang, A. (2018). Power attack and

protected implementation on lightweight block Cipher SKINNY. In 2018 13th

Asia

Joint

Conference

on

https://doi.org/10.1109/asiajcis.2018.00020

Information

Security.

Chandra, R. V. H., Kusyanti, A., & Data, M. (2018). Analisis Performa Proses Enkripsi

dan Dekripsi Menggunakan Algoritme AES-128 Pada Berbagai Format File.

Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(1), 481

https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4146

Pasricha, S. (2022). Embedded Systems Education: Experiences With Application

Driven Pedagogy. IEEE Embedded Systems Letters, 14(4), 167–170.

https://doi.org/10.1109/les.2022.3175686

Bhavani, A., & Ponnusamy, V. (2024). Genetic algorithm and the Kruskal-Wallis H

test-based trainer selection federated learning for IoT security. IEEE Access,

, 120474–120481.

https://doi.org/10.1109/access.2024.3450836

Unduhan

Diterbitkan

10 Jan 2025

Cara Mengutip

Ghifari, M., & Barlian Henryranu Prasetio. (2025). Analisis Performa Arduino Uno Dalam Embedded System Berbasis RFID Terhadap Algoritma Enkripsi SKINNY. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 9(2). Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14507

Terbitan

Bagian

Artikel
Loading...