Analisis Penjualan Bobby Aquatic Menggunakan K-Means Clustering dan Holt-Winters dengan Pendekatan CRISP-DM
Kata Kunci:
Segmentasi produk, K-Means Clustering, Holt-Winters Exponential Smoothing, RFM (Recency, Frequency, Monetary), CRISP-DM, DashboardAbstrak
Bobby Aquatic adalah bisnis yang bergerak di bidang perdagangan akuatik, saat ini Bobby Aquatic menghadapi tantangan dalam efisiensi pengadaan stok dan prediksi tren penjualan yang akurat. Penelitian ini bertujuan untuk menganalisis pola penjualan Bobby Aquatic menggunakan pendekatan K-Means Clustering dan Holt-Winters Exponential Smoothing berdasarkan metodologi CRISP-DM.
Data yang digunakan berasal dari data penjualan dua cabang bisnis, yaitu Bobby Aquatic 1 dan Bobby Aquatic 2. K-Means Clustering digunakan untuk segmentasi produk berdasarkan model RFM (Recency, Frequency, Monetary), dengan tujuan mengelompokkan produk berdasarkan performa penjualannya. Hasil evaluasi dengan Silhouette Score menunjukkan rentang nilai 0,4 – 0,5 dan diperoleh jumlah cluster optimal adalah 4. Hasil ini juga konsisten dengan pencarian cluster optimal menggunakan Elbow method. Sementara itu, Holt-Winters Exponential Smoothing diterapkan untuk memprediksi penjualan berdasarkan pola tren dan musiman. Model ini dievaluasi menggunakan MAPE (Mean Absolute Percentage Error ), dengan tingkat error sebesar 6,90% untuk model pertama dan 9,34% untuk model kedua. Hasil analisis Clustering dan prediksi penjualan disajikan dalam bentuk dashboard analitik interaktif yang diimplementasikan menggunakan Streamlit Community Cloud untuk mempermudah pemantauan analisis secara berkelanjutan. Penelitian ini diharapkan dapat mendukung manajemen dalam pengambilan keputusan strategis terkait pengadaan stok dan perencanaan penjualan berdasarkan hasil analisis data
Referensi
Aleksandrova, S. V., Vasiliev, V.A. and Aleksandrov, M.N., 2020. Information systems and technologies in quality management. Proceedings of the 2020 IEEE International Conference ‘Quality Management, Transport and Information Security, Information Technologies’, IT and QM and IS 2020, pp.173–175. https://doi.org/10.1109/ITQMIS51053.2020.9322959.
Fithriyah, M., Yaqin, M.A. and Zaman, S., 2021. K-Means Clustering Untuk Segmentasi Produk Berdasarkan Analisis Recency, Frequency, Monetary (RFM) Pada Data Transaksi Penjualan. ILKOMNIKA: Journal of Computer Science and Applied Informatics, 3(2), pp.151–164. https://doi.org/10.28926/ilkomnika.v3i2.284.
Gustriansyah, R., Suhandi, N. and Antony, F., 2019. Clustering optimization in RFM analysis based on k-means. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), pp.470–477. https://doi.org/10.11591/ijeecs.v18.i1.pp470-477.
Halim, N., Informasi, S., Informasi, F.T. and Tarumanagara, U., 2023. Perancangan Dashboard Dan Prediksi. Jurnal Ilmu Komputer dan Sistem Informasi, 11(1), pp.1–6.
Hariri, F.R. and Prakasa, J.E.W., 2023. Chicken Menu Sales Forecasting System using Multiplicative Holt-Winters Triple Exponential Smoothing. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology), 15(1), pp.8–14. https://doi.org/10.18860/mat.v15i1.21103.
Jiang, W., Wu, X., Gong, Y., Yu, W. and Zhong, X., 2020. Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, [online] 193, p.116779. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0360544219324740>.
Johnson, O., Brown, W. and Wilson, G., 2024. The Role of Big Data Analytics in Retail Marketing and Supply Chain Optimization. [online] https://doi.org/10.20944/preprints202407.2058.v1.
Karthik Reddy Chavva, K. and Roy, S., 2023. The Power of Data in Improving Retail Decisions. International Journal of Science and Research (IJSR), 12(9), pp.382–391. https://doi.org/10.21275/sr23902132710.
Lewis, C.D., 1982. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting.
Lin, X., 2022. Big Data Analysis of Personalized Recommendation in E-Commerce. Proceedings of the 2022 International Conference on Social Sciences and Humanities and Arts (SSHA 2022), 653(Ssha), pp.768–771. https://doi.org/10.2991/assehr.k.220401.147.
Marrakchi, N., Bergam, A., Fakhouri, H. and Kenza, K., 2023. A hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks. Mathematical Modeling and Computing, 10(4), pp.1154–1163. https://doi.org/10.23939/mmc2023.04.1154.
Muhammad saad bin ilyas, Atif Ikram, Muhammad Aadil Butt and Iqra Tariq, 2023. Comparative Analysis of Regression Algorithms used to Predict the Sales of Big Marts. Journal of Innovative Computing and Emerging Technologies, 3(1). https://doi.org/10.56536/jicet.v3i1.53.
Palacios, H.J.G., Toledo, R.A.J., Pantoja, G.A.H. and Navarro, Á.A.M., 2017. A comparative between CRISP-DM and SEMMA through the construction of a MODIS repository for studies of land use and cover change. Advances in Science, Technology and Engineering Systems, 2(3), pp.598–604. https://doi.org/10.25046/aj020376.
Saltz, J.S., 2021. CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps. Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, pp.2337–2344. https://doi.org/10.1109/BigData52589.2021.9671634.
Aleksandrova, S. V., Vasiliev, V.A. and Aleksandrov, M.N., 2020. Information systems and technologies in quality management. Proceedings of the 2020 IEEE International Conference ‘Quality Management, Transport and Information Security, Information Technologies’, IT and QM and IS 2020, pp.173–175. https://doi.org/10.1109/ITQMIS51053.2020.9322959.
Fithriyah, M., Yaqin, M.A. and Zaman, S., 2021. K-Means Clustering Untuk Segmentasi Produk Berdasarkan Analisis Recency, Frequency, Monetary (RFM) Pada Data Transaksi Penjualan. ILKOMNIKA: Journal of Computer Science and Applied Informatics, 3(2), pp.151–164. https://doi.org/10.28926/ilkomnika.v3i2.284.
Gustriansyah, R., Suhandi, N. and Antony, F., 2019. Clustering optimization in RFM analysis based on k-means. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), pp.470–477. https://doi.org/10.11591/ijeecs.v18.i1.pp470-477.
Halim, N., Informasi, S., Informasi, F.T. and Tarumanagara, U., 2023. Perancangan Dashboard Dan Prediksi. Jurnal Ilmu Komputer dan Sistem Informasi, 11(1), pp.1–6.
Hariri, F.R. and Prakasa, J.E.W., 2023. Chicken Menu Sales Forecasting System using Multiplicative Holt-Winters Triple Exponential Smoothing. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology), 15(1), pp.8–14. https://doi.org/10.18860/mat.v15i1.21103.
Jiang, W., Wu, X., Gong, Y., Yu, W. and Zhong, X., 2020. Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, [online] 193, p.116779. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0360544219324740>.
Johnson, O., Brown, W. and Wilson, G., 2024. The Role of Big Data Analytics in Retail Marketing and Supply Chain Optimization. [online] https://doi.org/10.20944/preprints202407.2058.v1.
Karthik Reddy Chavva, K. and Roy, S., 2023. The Power of Data in Improving Retail Decisions. International Journal of Science and Research (IJSR), 12(9), pp.382–391. https://doi.org/10.21275/sr23902132710.
Lewis, C.D., 1982. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting.
Lin, X., 2022. Big Data Analysis of Personalized Recommendation in E-Commerce. Proceedings of the 2022 International Conference on Social Sciences and Humanities and Arts (SSHA 2022), 653(Ssha), pp.768–771. https://doi.org/10.2991/assehr.k.220401.147.
Marrakchi, N., Bergam, A., Fakhouri, H. and Kenza, K., 2023. A hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks. Mathematical Modeling and Computing, 10(4), pp.1154–1163. https://doi.org/10.23939/mmc2023.04.1154.
Muhammad saad bin ilyas, Atif Ikram, Muhammad Aadil Butt and Iqra Tariq, 2023. Comparative Analysis of Regression Algorithms used to Predict the Sales of Big Marts. Journal of Innovative Computing and Emerging Technologies, 3(1). https://doi.org/10.56536/jicet.v3i1.53.
Palacios, H.J.G., Toledo, R.A.J., Pantoja, G.A.H. and Navarro, Á.A.M., 2017. A comparative between CRISP-DM and SEMMA through the construction of a MODIS repository for studies of land use and cover change. Advances in Science, Technology and Engineering Systems, 2(3), pp.598–604. https://doi.org/10.25046/aj020376.
Saltz, J.S., 2021. CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps. Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, pp.2337–2344. https://doi.org/10.1109/BigData52589.2021.9671634.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.