Pelatihan Multi-Layer Neural Network Menggunakan Algoritma Genetika untuk Memprediksi Harga Saham Esok Hari (T+1)
Kata Kunci:
Saham, Multi-layer neural network, Algoritma genetika, BackpropagationAbstrak
Saham adalah salah satu instrumen investasi yang dikenal dengan potensi keuntungan dan resikonya yang cukup tinggi. Tingginya potensi dan resiko investasi saham disebabkan karena harganya yang fluktuatif dan dapat berubah dalam hitungan detik. Untuk meminimalisir resiko, diperlukan sebuah sistem yang dapat memprediksi harga penutupan saham esok hari. Arsitektur yang digunakan dalam penelitian ini adalah multi-layer neural network. Arsitektur ini kemudian dilatih dengan menggunakan 2 metode, yaitu backpropagation dan algoritma genetika. Kedua metode tersebut bertujuan untuk mendapatkan bobot-bobot pada arsitektur multi-layer neural network. Parameter backpropagation yang didapatkan dari pengujian penelitian ini adalah banyak iterasi sebesar 4500 iterasi dengan learning rate 0.7. Sedangkan parameter untuk metode pelatihan algoritma genetika adalah banyak generasi 2000, ukuran populasi 200, crossover rate 0.1 dan mutation rate 0.9. Dengan menggunakan parameter tersebut diatas, rata-rata nilai RMSE yang dihasilkan dengan menggunakan metode pelatihan backpropagation adalah 0.048006. Sementara ketika menggunakan metode pelatihan algoritma genetika, rata-rata nilai RMSE yang dihasilkan oleh jaringan adalah 0.065205. Sehingga pada penelitian ini, nilai error yang dihasilkan oleh metode pelatihan backpropagation lebih kecil dibandingkan dengan metode pelatihan algoritma genetika.