Pengenalan Entitas Bernama untuk Identifikasi Transaksi Akuntansi Menggunakan Hidden Markov Model
Kata Kunci:
pelabelan transaksi akuntansi, named entity recognition, hidden markov model, information extractionAbstrak
Akuntansi merupakan suatu pekerjaan yang memiliki peranan penting dalam mendukung kelancaran ekonomi, karena pencatatan setiap proses bisnis yang terjadi dilakukan dalam akuntansi. Namun, pencatatan transaksi keuangan dalam akuntansi untuk dapat dilakukan identifikasi ke dalam bentuk jurnal masih dilakukan secara manual, sehingga dibutuhkan klasifikasi dan ekstraksi informasi yang terdapat pada teks transaksi akuntansi. Named Entity Recognition (NER) atau pengenalan entitas bernama merupakan langkah awal yang dibutuhkan untuk melakukan proses ekstraksi informasi. Untuk menyelesaikan masalah tersebut, dilakukan pengenalan entitas bernama untuk identifikasi transaksi akuntansi. Pada penelitian ini digunakan metode Hidden Markov Model (HMM), karena HMM dapat menyelesaikan pelabelan serta dikenal handal dalam melakukan pengenalan entitas bernama. Proses utama dalam pengenalan entitas bernama ini dibagi menjadi dua, yaitu proses pemodelan menggunakan Hidden Markov Model dan proses decoding menggunakan Viterbi Algorithm. Pada penelitian ini akan dilakukan pengenalan terhadap 12 entitas, antara lain DATE, TITLE, PER, TRANS, EXP_MON, TYP_COMP, FIRST_ORG, SECOND_ORG, EXP_DATE, NO_DATE, MONTH dan YEAR. Secara keseluruhan pengenalan entitas yang dilakukan pada penelitian ini menghasilkan nilai rata-rata precision, recall dan f-measure berturut-turut yaitu 81.75%, 87.88% dan 82.39%.