Clustering Pasien Kanker Berdasarkan Struktur Protein Dalam Tubuh Menggunakan Metode K-Medoids
Kata Kunci:
clustering, k-medoids, kanker, protein tubuh, silhouette coefficientAbstrak
Kanker merupakan penyakit yang kerap menjadi momok bagi sebagian besar orang memang telah memakan banyak korban. Semakin berkembangnya zaman semakin banyak virus yang tersebar di masyarakat. Kanker adalah istilah yang digunakan untuk menggambarkan ratusan penyakit berbeda dengan fitur tertentu yang sama. Kanker dimulai dengan perubahan dalam struktur dan fungsi sel yang menyebabkan sel membelah dan menggandakan diri tanpa terkontrol. Umumnya kanker dinamai sesuai organ dan jenisnya tempat pertama kali ia berkembang. Mutasi gen yang paling sering ditemukan pada kanker manusia adalah Gen P53. Gen P53 merupakan gen penekan tumor yang mengkode atau mengekspresikan protein 53. Dari berbagai banyak data yang ada perlu dilakukan proses klusterisasi yaitu pengelompokkan jenis kanker berdasarkan kelasnya. Salah satu metode klustering yang mulai banyak digunakan adalah metode K-Medoids. K-medoids atau dikenal pula dengan PAM (Partitioning Around Medoids) menggunakan metode partisi clustering untuk mengelompokkan sekumpulan n objek menjadi sejumlah k cluster. Algoritma ini menggunakan objek pada kumpulan objek untuk mewakili sebuah cluster. Objek yang terpilih untuk mewakili sebuah cluster disebut medoid. Pada penelitian clustering pasien kanker menggunakan metode K-Medoids ini menunjukkan nilai persentase kualitas cluster sebesar 77% pada percobaan pada nilai k 14 dan menggunakan 116 data.