Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naïve Bayes dan Pembobotan Emoji

##plugins.themes.bootstrap3.article.main##

Agnes Rossi Trisna Lestari Rizal Setya Perdana Mochammad Ali Fauzi

Abstrak

Analisis sentimen merupakan cabang dari text mining, fokus utamanya adalah menganalisa dokumen teks. Dokumen teks terkadang mengandung unsur non-tekstual, salah satunya emoji. Emoji merupakan simbol grafis Unicode berupa gambar untuk mengekspresikan perasaan seseorang. Algoritme yang digunakan dalam penelitian ini adalah Naïve Bayes dengan pembaharuan berupa penambahan pembobotan non-tekstual (emoji). Hasil dari pembobotan tekstual dan non tekstual yang dinormalisasi dengan metode Min-max digabungkan disertai nilai konstanta tertentu sehingga menghasilkan sentimen positif maupun negatif. Data diambil dari Twitter tentang Pilkada DKI 2017 sebanyak 900 data tweet. Dari hasil pengujian akurasi, diperoleh 68,52% untuk kondisi pembobotan tekstual, 75,93% untuk pembobotan non-tesktual, dan 74,81% untuk kondisi penggabungan dengan nilai konstanta 0,5 untuk tekstual dan 0,5 untuk non-tekstual. Dari hasil pengujian pengaruh pembobotan non-tesktual disimpulkan bahwa pembobotan non-tekstual berpengaruh terhadap akurasi dan pengklasifikasian, dengan komposisi konstanta pengali terbaik ketika α=0,4 dan β=0,6 sampai dengan α=0,1 dan β=0,9.

##plugins.themes.bootstrap3.article.details##

Cara Sitasi
Trisna Lestari, A., Perdana, R., & Fauzi, M. Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naïve Bayes dan Pembobotan Emoji. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 12, p. 1718-1724, agu. 2017. ISSN 2548-964X. Tersedia pada: <https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/627>. Tanggal Akses: 23 mar. 2023
Bagian
Artikel